about me

Maritim world

shipping and maritim

Rabu, 21 Juli 2010

oil platform

Oil platform

From Wikipedia, the free encyclopedia

Jump to: navigation, search
A typical offshore Oil/Gas platform.

An offshore platform, often referred to as an oil platform or an oil rig, is a lаrge structure used in offshore drilling to house workers and machinery needed to drill wells in the ocean bed, extract oil or natural gas, or both, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the platform may be fixed to the ocean floor, may consist of an artificial island, or may float.[1]

Remote subsea wells may also be connected to a platform by flow lines and by umbilical connections; these subsea solutions may consist of single wells or of a manifold centre for multiple wells.

Contents

[hide]

[edit] History

Offshore platform Gulf of Mexico

Around 1891 the first submerged oil wells were drilled from platforms built on piles in the fresh waters of the Grand Lake St. Marys (a.k.a. Mercer County Reservoir) in Ohio. The wide but shallow reservoir was built from 1837 to 1845 to provide water to the Miami and Erie Canal.

Around 1896 the first submerged oil wells in salt water were drilled in the portion of the Summerland field extending under the Santa Barbara Channel in California. The wells were drilled from piers extending from land out into the channel.

Other notable early submerged drilling activities occurred on the Canadian side of Lake Erie in the 1900s and Caddo Lake in Louisiana in the 1910s. Shortly thereafter, wells were drilled in tidal zones along the Gulf Coast of Texas and Louisiana. The Goose Creek field near Baytown, Texas is one such example. In the 1920s drilling was done from concrete platforms in Lake Maracaibo, Venezuela.

The oldest subsea well recorded in Infield's offshore database is the Bibi Eibat well which came on stream in 1923 in Azerbaijan. Landfill was used to raise shallow portions of the Caspian Sea.

In the early 1930s the Texas Company developed the first mobile steel barges for drilling in the brackish coastal areas of the gulf.

In 1937 Pure Oil Company (now part of Chevron Corporation) and its partner Superior Oil Company (now part of ExxonMobil Corporation) used a fixed platform to develop a field in 14 feet of water, one mile offshore of Calcasieu Parish, Louisiana.

In 1946, Magnolia Petroleum Company (now part of ExxonMobil) erected a drilling platform in 18 ft of water, 18 miles[vague] off the coast of St. Mary Parish, Louisiana.

In early 1947 Superior Oil erected a drilling/production platform in 20 ft of water some 18 miles[vague] off Vermilion Parish, Louisiana. But it was Kerr-McGee Oil Industries (now Anadarko Petroleum Corporation), as operator for partners Phillips Petroleum (ConocoPhillips) and Stanolind Oil & Gas (BP), that completed its historic Ship Shoal Block 32 well in October 1947, months before Superior actually drilled a discovery from their Vermilion platform farther offshore. In any case, that made Kerr-McGee's well the first oil discovery drilled out of sight of land.[2][3]

The Thames Sea Forts of World War II are considered the direct predecessors of modern offshore platforms. Having been pre-constructed in a very short time, they were then floated to their location and placed on the shallow bottom of the Thames estuary.[4][5]

[edit] Types

Larger lake- and sea-based offshore platforms and drilling rigs are some of the largest moveable man-made structures in the world. There are several types of oil platforms and rigs:

1, 2) conventional fixed platforms; 3) compliant tower; 4, 5) vertically moored tension leg and mini-tension leg platform; 6) Spar ; 7,8) Semi-submersibles ; 9) Floating production, storage, and offloading facility; 10) sub-sea completion and tie-back to host facility.[6]

[edit] Fixed platforms

A fixed platform base under construction on a Louisiana river

These platforms are built on concrete or steel legs, or both, anchored directly onto the seabed, supporting a deck with space for drilling rigs, production facilities and crew quarters. Such platforms are, by virtue of their immobility, designed for very long term use (for instance the Hibernia platform). Various types of structure are used, steel jacket, concrete caisson, floating steel and even floating concrete. Steel jackets are vertical sections made of tubular steel members, and are usually piled into the seabed. Concrete caisson structures, pioneered by the Condeep concept, often have in-built oil storage in tanks below the sea surface and these tanks were often used as a flotation capability, allowing them to be built close to shore (Norwegian fjords and Scottish firths are popular because they are sheltered and deep enough) and then floated to their final position where they are sunk to the seabed. Fixed platforms are economically feasible for installation in water depths up to about 1,700 ft (520 m).

[edit] Compliant towers

These platforms consist of slender flexible towers and a pile foundation supporting a conventional deck for drilling and production operations. Compliant towers are designed to sustain significant lateral deflections and forces, and are typically used in water depths ranging from 1,500 to 3,000 feet (460 to 910 m).

[edit] Semi-submersible platform

Platform P-51 off the Brazilian coast is a semi-submersible platform

These platforms have hulls (columns and pontoons) of sufficient buoyancy to cause the structure to float, but of weight sufficient to keep the structure upright. Semi-submersible platforms can be moved from place to place; can be ballasted up or down by altering the amount of flooding in buoyancy tanks; they are generally anchored by combinations of chain, wire rope or polyester rope, or both, during drilling or production operations, or both, though they can also be kept in place by the use of dynamic positioning. Semi-submersibles can be used in water depths from 200 to 10,000 feet (60 to 3,000 m).

[edit] Jack-up platforms

Jack-up platforms (or jack-ups), as the name suggests, are platforms that can be jacked up above the sea using legs that can be lowered, much like jacks. These platforms are typically used in water depths up to 400 feet (120 m), although some designs can go to 550 ft (170 m) depth. They are designed to move from place to place, and then anchor themselves by deploying the legs to the ocean bottom using a rack and pinion gear system on each leg.

[edit] Drillships

A drillship is a maritime vessel that has been fitted with drilling apparatus. It is most often used for exploratory drilling of new oil or gas wells in deep water but can also be used for scientific drilling. Early versions were built on a modified tanker hull, but purpose-built designs are used today. Most drillships are outfitted with a dynamic positioning system to maintain position over the well. They can drill in water depths up to 12,000 ft (3,700 m)[7].

[edit] Floating production systems

The main types of floating production systems are FPSO (floating production, storage, and offloading system). FPSOs consist of large monohull structures, generally (but not always) shipshaped, equipped with processing facilities. These platforms are moored to a location for extended periods, and do not actually drill for oil or gas. Some variants of these applications, called FSO (floating storage and offloading system) or FSU (floating storage unit), are used exclusively for storage purposes, and host very little process equipment.

[edit] Tension-leg platform

TLPs are floating platforms tethered to the seabed in a manner that eliminates most vertical movement of the structure. TLPs are used in water depths up to about 6,000 feet (2,000 m). The "conventional" TLP is a 4-column design which looks similar to a semisubmersible. Proprietary versions include the Seastar and MOSES mini TLPs; they are relatively low cost, used in water depths between 600 and 4,300 feet (180 and 1,300 m). Mini TLPs can also be used as utility, satellite or early production platforms for larger deepwater discoveries.

A 'Statfjord' Gravity base structure under construction in Norway. Almost all of the structure will end up submerged.

[edit] Spar platforms

Spars are moored to the seabed like TLPs, but whereas a TLP has vertical tension tethers, a spar has more conventional mooring lines. Spars have to-date been designed in three configurations: the "conventional" one-piece cylindrical hull, the "truss spar" where the midsection is composed of truss elements connecting the upper buoyant hull (called a hard tank) with the bottom soft tank containing permanent ballast, and the "cell spar" which is built from multiple vertical cylinders. The spar has more inherent stability than a TLP since it has a large counterweight at the bottom and does not depend on the mooring to hold it upright. It also has the ability, by adjusting the mooring line tensions (using chain-jacks attached to the mooring lines), to move horizontally and to position itself over wells at some distance from the main platform location. The first production spar was Kerr-McGee's Neptune, anchored in 1,930 ft (590 m) in the Gulf of Mexico; however, spars (such as Brent Spar) were previously used as FSOs.

Eni's Devil's Tower located in 5,610 ft (1,710 m) of water, in the Gulf of Mexico, was the world's deepest spar until 2010. The world's deepest platform is currently the Perdido spar in the Gulf of Mexico, floating in 2,438 meters of water. It is operated by Royal Dutch Shell and was built at a cost of $3 billion.[8]

The first Truss spars were Kerr-McGee's Boomvang and Nansen. The first (and only) cell spar is Kerr-McGee's Red Hawk[9].

[edit] Normally unmanned installations (NUI)

These installations (sometimes called toadstools) are small platforms, consisting of little more than a well bay, helipad and emergency shelter. They are designed to operate remotely under normal conditions, only to be visited occasionally for routine maintenance or well work.

[edit] Conductor support systems

These installations, also known as satellite platforms, are small unmanned platforms consisting of little more than a well bay and a small process plant. They are designed to operate in conjunction with a static production platform which is connected to the platform by flow lines or by umbilical cable, or both.

[edit] Particularly large examples

The Petronius Platform is a compliant tower in the Gulf of Mexico, which stands 2,000 feet (610 m) above the ocean floor. It is one of the world's tallest structures.[10]

The Hibernia platform is the world's largest (in terms of weight) offshore platform, located on the Jeanne D'Arc basin, in the Atlantic Ocean off the coast of Newfoundland. This Gravity base Structure (GBS), which sits on the ocean floor, is 364 feet (111 m) high and has storage capacity for 1.3 million barrels (210,000 m3) of crude oil in its 278.8-foot (85.0 m) high caisson. The platform acts as a small concrete island with serrated outer edges designed to withstand the impact of an iceberg. The GBS contains production storage tanks and the remainder of the void space is filled with ballast with the entire structure weighing in at 1.2 million tons.

[edit] Maintenance and supply

A typical oil production platform is self-sufficient in energy and water needs, housing electrical generation, water desalinators and all of the equipment necessary to process oil and gas such that it can be either delivered directly onshore by pipeline or to a floating platform or tanker loading facility, or both. Elements in the oil/gas production process include wellhead, production manifold, production separator, glycol process to dry gas, gas compressors, water injection pumps, oil/gas export metering and main oil line pumps.

Larger platforms are assisted by smaller ESVs (emergency support vessels) like the British Iolair that are summoned when something has gone wrong, e.g. when a search and rescue operation is required. During normal operations, PSVs (platform supply vessels) keep the platforms provisioned and supplied, and AHTS vessels can also supply them, as well as tow them to location and serve as standby rescue and firefighting vessels.

[edit] Crew

[edit] Essential personnel

Not all of the following personnel are present on every platform. On smaller platforms, one worker can perform a number of different jobs. The following also are not names officially recognized in the industry:

  • OIM (offshore installation manager) who is the ultimate authority during his/her shift and makes the essential decisions regarding the operation of the platform;
  • operations team leader (OTL);
  • offshore operations engineer (OOE) who is the senior technical authority on the platform;
  • PSTL or operations coordinator for managing crew changes;
  • dynamic positioning operator, navigation, ship or vessel maneuvering (MODU), station keeping, fire and gas systems operations in the event of incident;
  • second mate to meet manning requirements of flag state, operates fast rescue craft, cargo operations, fire team leader;
  • third mate to meet manning requirements of flag state, operate fast rescue craft, cargo operations, fire team leader;
  • ballast control operator to operate fire and gas systems;
  • crane operators to operate the cranes for lifting cargo around the platform and between boats;
  • scaffolders to rig up scaffolding for when it is required for workers to work at height;
  • coxswains to maintain the lifeboats and manning them if necessary;
  • control room operators, especially FPSO or production platforms;
  • catering crew, including people tasked with performing essential functions such as cooking, laundry and cleaning the accommodation;
  • production techs to run the production plant;
  • helicopter pilot(s) living on some platforms that have a helicopter based offshore and transporting workers to other platforms or to shore on crew changes;
  • maintenance technicians (instrument, electrical or mechanical).

[edit] Incidental personnel

Drill crew will be on board if the installation is performing drilling operations. A drill crew will normally comprise:

Well services crew will be on board for well work. The crew will normally comprise:

  • Well services supervisor
  • Wireline or coiled tubing operators
  • Pump operator

[edit] Drawbacks

[edit] Risks

The nature of their operation — extraction of volatile substances sometimes under extreme pressure in a hostile environment — means risk; accidents and tragedies occur regularly. The U.S. Minerals Management Service reported 69 offshore deaths, 1,349 injuries, and 858 fires and explosions on offshore rigs in the Gulf of Mexico from 2001 to 2010.[11] In July 1988, 167 people died when Occidental Petroleum's Piper Alpha offshore production platform, on the Piper field in the UK sector of the North Sea, exploded after a gas leak. The resulting investigation conducted by Lord Cullen and publicized in the first Cullen Report was highly critical of a number of areas, including, but not limited to, management within the company, the design of the structure, and the Permit to Work System. The report was commissioned in 1988, and was delivered November 1990.[12] The accident greatly accelerated the practice of providing living accommodations on separate platforms, away from those used for extraction.

However, this was in itself a hazardous environment. In March 1980, the 'flotel' (floating hotel) platform Alexander L. Kielland capsized in a storm in the North Sea with the loss of 123 lives.[13]

In 2001, Petrobras 36 in Brazil exploded and sank five days later, killing 11 people.

Given the number of grievances and conspiracy theories that involve the oil business, and the importance of gas/oil platforms to the economy, platforms in the United States are believed to be potential terrorist targets. Agencies and military units responsible for maritime counterterrorism in the US (Coast Guard, Navy SEALs, Marine Recon) often train for platform raids.

On April 20, 2010, the Deepwater Horizon platform, 52 miles off-shore of New Orleans, (property of Transocean and leased to BP) exploded, killing 11 people, and sank two days later. The resulting undersea gusher, conservatively estimated to exceed 20 million gallons as of early June, 2010, became the worst oil spill in US history, eclipsing the Exxon Valdez oil spill.

[edit] Ecological effects

NOAA map of the 3,858 oil and gas platforms extant in the Gulf of Mexico in 2006

In British waters, the cost of removing all platform rig structures entirely was estimated in 1995 at £1.5 billion, and the cost of removing all structures including pipelines—called a "clean sea" approach—at £3 billion.[citation needed]

In the United States, Marine Biologist Milton Love has proposed that oil platforms off the California coast be retained as artificial reefs, instead of being dismantled (at great cost), because he has found them to be havens for many of the species of fish which are otherwise declining in the region, in the course of 11 years of research.[14] Love is funded mainly by government agencies, but also in small part by the California Artificial Reef Enhancement Program. NOAA has said it is considering this course of action, but wants money to study the effects of the rigs in detail. Divers have been used to assess the fish populations surrounding the platforms.[15] In the Gulf of Mexico, more than 200 platforms have been similarly converted.[citation needed]

[edit] Deepest oil platforms

The world's deepest oil platform is the floating Independence Hub which is a semi-submersible platform in the Gulf of Mexico in a water depth of 2,414 metres (7,920 ft).

Non-floating compliant towers and fixed platforms:

[edit] See also

[edit] References

  1. ^ Oil Rigs and Platforms
  2. ^ Ref accessed 02-12-89 by technical aspects and coast mapping. Kerr-McGee
  3. ^ Project Redsand
  4. ^ Project Redsand
  5. ^ 11.2 Azerbaijan's Oil History Brief Oil Chronology since 1920 ­ Part 2 by Mir-Yusif Mir-Babayev
  6. ^ Office of Ocean Exploration and Research (15 December 2008). "Types of Offshore Oil and Gas Structures". NOAA Ocean Explorer: Expedition to the Deep Slope. National Oceanic and Atmospheric Administration. http://oceanexplorer.noaa.gov/explorations/06mexico/background/oil/media/types_600.html. Retrieved 23 May 2010.
  7. ^ "Chevron Drillship accessdate=2010-05-24". 2010-03-11. http://www.chevron.com/news/press/release/?id=2010-03-11.
  8. ^ Shell starts production at Perdido
  9. ^ "First Cell Spar accessdate=2010-05-24". http://www.fmctechnologies.com/en/SubseaSystems/GlobalProjects/NorthAmerica/US/KMGRedHawk.aspx?tab=%7BB01D40AB-5E2F-4710-9543-19C658AF29F5%7D.
  10. ^ "What is the World's Tallest Building?". All About Skyscrapers. 2009. http://www.allaboutskyscrapers.com/tallest_building.htm. Retrieved 23 May 2010.
  11. ^ "Potential for big spill after oil rig sinks". MSNBC. 2010-04-22. http://www.msnbc.msn.com/id/36683314/ns/us_news-life/. Retrieved 2010-06-04.
  12. ^ http://www.oilandgas.org.uk/issues/piperalpha/v0000864.cfm
  13. ^ "North Sea platform collapses". BBC News. 1980-03-27. http://news.bbc.co.uk/onthisday/hi/dates/stories/march/27/newsid_2531000/2531091.stm. Retrieved 2008-06-19.
  14. ^ Page M, Dugan J, Love M, Lenihan H.. "Ecological Performance and Trophic Links: Comparisons Among Platforms And Natural Reefs For Selected Fish And Their Prey". http://www.coastalresearchcenter.ucsb.edu/cmi/ecoperformance.html. Retrieved 2008-06-27.
  15. ^ SA Cox, CR Beaver, QR Dokken, and JR Rooker. (1996). "Diver-based under water survey techniques used to assess fish populations and fouling community development on offshore oil and gas platform structures.". In: MA Lang, CC Baldwin (Eds.) The Diving for Science…1996, "Methods and Techniques of Underwater Research". Proceedings of the American Academy of Underwater Sciences (16th Annual Scientific Diving Symposium). http://archive.rubicon-foundation.org/4689. Retrieved 2008-06-27.

[edit] External links

tugboat

Tugboat

From Wikipedia, the free encyclopedia

(Redirected from Tug boat)
Jump to: navigation, search
Tugboats assisting a ship on the Ghent-Terneuzen Canal

A tugboat (tug) is a boat that maneuvers vessels by pushing or towing them. Tugs move vessels that either should not move themselves, such as ships in a crowded harbor or a narrow canal, or those that cannot move themselves alone, such as barges, disabled ships, or oil platforms. Tugboats are powerful for their size and strongly built; some are ocean-going. Some tugboats serve as icebreakers or salvage boats. Early tugboats had steam engines; today diesel engines are used. In addition to towing gear, many tugboats contain firefighting monitors or guns, allowing them to assist in firefighting duties, especially in harbors.

Contents

[hide]

[edit] Types of tugboats

Swedish harbour-tug Svitzer Freja in tug-operation
(3,600 kW / 453 gross register tons (GRT))
German harbour-tug and cargo ship Karl Marx at Rostock harbour
The tugboat Matthew Tibbets in New York Harbor with Ellis Island in the background

Seagoing tugboats are in three basic categories:

  1. The standard seagoing tugboat with model bow that tows its "payload" on a hawser (long steel or soft fiber rope).
  2. The "notch tug" which can be secured in a notch at the stern of a specially designed barge, effectively making the combination a ship. This configuration, however, is dangerous to use with a barge which is "in ballast" (no cargo) or in a head or following sea. Therefore, the "notch tugs" are usually built with a towing winch. With this configuration, the barge being pushed might approach the size of a small ship, the interaction of the water flow allows a higher speed with a minimal increase in power required or fuel consumption.
  3. The "integral unit," "integrated tug and barge," or "ITB," comprises specially designed vessels that lock together in such a rigid and strong method as to be certified as such by authorities (classification societies) such as the American Bureau of Shipping. Lloyd's Register of Shipping, Indian Register of Shipping, Det Norske Veritas or several others. These units stay combined under virtually any sea conditions and the "tugs" usually have poor sea keeping designs for navigation without their "barges" attached. Vessels in this category are legally considered to be ships rather than tugboats and barges must be staffed accordingly. Such vessels must show navigation lights compliant with those required of ships rather than those required of tugboats and vessels under tow. Articulated tug and barge units also utilize mechanical means to connect to their barges. ATB's generally utilize Intercon and Bludworth connection systems. ATB's are generally staffed as a large tugboat, with between seven to nine crew members. The typical American ATB operating on the east coast, per custom, displays navigational lights of a towing vessel pushing ahead, as described in the '72 COLREGS.

Harbor tugs. Historically tugboats were the first seagoing vessels to receive steam propulsion, freedom from the restraint of the wind, and capability of going in any direction. As such, they were employed in harbors to assist ships in docking and departure.

River tugs River tugs are also referred to as towboats or pushboats. Their hull designs would make open ocean operations dangerous. River tugs usually do not have any significant hawser or winch. Their hulls feature a flat front or bow to line up with the rectangular stern of the barge.

[edit] Tugboat propulsion

Tugboat engines typically produce 500 to 2,500 kW (~ 680 to 3,400 hp), but larger boats (used in deep waters) can have power ratings up to 20,000 kW (~ 27,200 hp) and usually have an extreme power:tonnage-ratio (normal cargo and passenger ships have a P:T-ratio (in kW:GRT) of 0.35 to 1.20, whereas large tugs typically are 2.20 to 4.50 and small harbour-tugs 4.0 to 9.5). The engines are often the same as those used in railroad locomotives, but typically drive the propeller mechanically instead of converting the engine output to power electric motors, as is common for railroad engines. For safety, tugboats' engines often feature two of each critical part for redundancy.[1]

A tugboat's power is typically stated by its engine's horsepower and its overall bollard pull.

Diagram with components named

Tugboats are highly maneuverable, and various propulsion systems have been developed to increase maneuverability and increase safety. The earliest tugs were fitted with paddle wheels, but these were soon replaced by propeller-driven tugs. Kort nozzles have been added to increase thrust per kW/hp. This was followed by the nozzle-rudder, which omitted the need for a conventional rudder. The cycloidal propeller was developed prior to World War II and was occasionally used in tugs because of its maneuverability. After World War II it was also linked to safety due to the development of the Voith Water Tractor, a tugboat configuration which could not be pulled over by its tow. In the late 1950s, the Z-drive or (azimuth thruster) was developed. Although sometimes referred to as the Schottel system, many brands exist: Schottel, Z-Peller, Duckpeller, Thrustmaster, Ulstein, Wärtsilä, etc. The propulsion systems are used on tugboats designed for tasks such as ship docking and marine construction. Conventional propeller/rudder configurations are more efficient for port-to-port towing.

The Kort nozzle is a sturdy cylindrical structure around a special propeller having minimum clearance between the propeller blades and the inner wall of the Kort nozzle. The thrust:power ratio is enhanced because the water approaches the propeller in a linear configuration and exits the nozzle the same way. The Kort nozzle is named after its inventor, but many brands exist.

A recent Dutch innovation is the Carousel Tug, winner of the Maritime Innovation Award at the Dutch Maritime Innovation Awards Gala in 2006[2]. The Carousel Tug adds a pair of interlocking rings to the body of the tug, the inner ring attached to the boat, with the outer ring attached to the towed ship by winch or towing hook. Since the towing point rotates freely, the tug is very difficult to capsize[3].

The Voith Schneider propeller (VSP), also known as a cycloidal drive is a specialized marine propulsion system. It is highly maneuverable, being able to change the direction of its thrust almost instantaneously. It is widely used on tugs and ferries.

From a circular plate, rotating around a vertical axis, a circular array of vertical blades (in the shape of hydrofoils) protrude out of the bottom of the ship. Each blade can rotate itself around a vertical axis. The internal gear changes the angle of attack of the blades in sync with the rotation of the plate, so that each blade can provide thrust in any direction, very similar to the collective pitch control and cyclic in a helicopter.

[edit] Tugboats in fiction

To date there have been three children's shows revolving around anthropomorphic (living) tugboats. In the late 1980s, 13 episodes were made of TUGS. It had an American spinoff called Salty's Lighthouse. One of the creators of that series went on to make Theodore Tugboat. On Tugs, the models were able to move their heads and eyes and didn't have motors. On Theodore Tugboat, the models have motors and moving eyes.

Little Toot (1939) is a children's story that tells the story of an anthropomorphic tugboat child, who wants help tow ships in a harbour near Hoboken. He's rejected by the tugboat community and dejectedly drifts out to sea, where he accidentally discovers a shipwrecked liner and a chance to prove his worth.

The children's book Scuffy the Tugboat, first published in 1946 as part of the Little Golden Books series, follows the adventures of a young toy tugboat who seeks a life beyond the confines of a tub inside his owner's toy store.

The Dutch writer Jan de Hartog wrote numerous nautical novels, first in Dutch, then in English. The novel Hollands glorie, written prior to World War II, was made into a Dutch miniseries in 1978, concerned the dangers faced by the crews of Dutch tug salvage tugs.[4][5] The novella Stella, concerning the dangers faced by the captains of rescue tugs in the English Channel during World War II, was made into a film entitled The Key in 1958.[6] The novel The Captain, about the captain of a rescue tug during a Murmansk Convoy, sold over a million copies.[7] Its sequel, The Commodore, features the narrator captaining a fleet of tugs in peace-time.

Canadian writer Farley Mowat wrote the book The Grey Seas Under telling the tale of a legendary North Atlantic salvage tug, the Foundation Franklin. He later wrote The Serpent's Coil which also deals with salvage tugs in the North Atlantic.

Tugboat Annie was the subject of a series of Saturday Evening Post magazine stories featuring the character of a female captain of the tugboat Narcissus in Puget Sound, later featured in the films Tugboat Annie (1933), Tugboat Annie Sails Again (1940) and Captain Tugboat Annie (1945). The Canadian television series The Adventures of Tugboat Annie was filmed in 1957.

[edit] Tugboat Races

Tugboat races are held annually on Elliott Bay in Seattle,[8] the Hudson River, the New York Tugboat Race,[9], the Detroit River.[10] and the St. Mary's River[11]

[edit] Gallery

[edit] See also

[edit] References

  1. ^ Bilinski, Marcie B.: "The Workhorse of the Waterways" Massachusetts Office of Coastal Zone Management, Coastlines 2007
  2. ^ "Novatug.nl news". Novatug. http://www.novatug.nl/news/index.php?year=2006&id=7. Retrieved 2008-01-18.
  3. ^ "Novatug.nl product information". Novatug. http://novatug.nl/works/index.php. Retrieved 2008-01-18.
  4. ^ "Hollands glorie". IMDb. http://imdb.com/title/tt0178141/. Retrieved 2008-01-20.
  5. ^ Mel Gussow (September 24, 2002). "Jan de Hartog, 88, Author of His Own Life". The New York Times. http://query.nytimes.com/gst/fullpage.html?res=9806E1DC1539F937A1575AC0A9649C8B63&sec=&spon=&pagewanted=all. Retrieved 2008-01-20.
  6. ^ "The Key". IMDb. http://imdb.com/title/tt0051816/. Retrieved 2008-01-20.
  7. ^ "Hartog, Jan De [1914 - 2002"]. New York State Library. http://www.nnp.org/nni/Publications/Dutch-American/hartog.html. Retrieved 2008-01-20.
  8. ^ Port of Seattle
  9. ^ "In search of the toughest tug," by laurel Graeber, New York Times, aug. 29th 2008.
  10. ^ www.tugrace.com
  11. ^ The Great Tugboat Race
  • Jane's Ocean Technology 1979-80 / Jane's Yearbooks, 1979 - ISBN 0 531 03902 1.
  • On Tugboats: Stories of Work and Life Aboard / Virginia Thorndike - Down East Books, 2004.
  • Under Tow: A Canadian History of Tugs and Towing / Donal Baird - Vanwell Publishing, 277 p., 2003 - ISBN 1551250764
  • Primer of Towing / George H. Reid - Cornell Maritime Press, 1992.
  • South Park- Episode 83, Russell Crowe Beats people up around the world and has a tugboat as a companion.

[edit] External links

Label